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Recent infrared measurements of phonon peaks in gated bilayer graphene reveal two striking signatures of
electron-phonon interaction: an asymmetric Fano lineshape and a giant variation in the peak intensity as a
function of the applied gate voltage. In this Rapid Communication we provide a unified theoretical framework
which accounts for both these effects and unveils the occurrence of a switching mechanism between symmetric
�Eg� and antisymmetric �Eu� phonon modes as dominant channel in the optical response. A complete phase
diagram of the optical phonon response is also presented, as a function of both the charge density and the band
gap.
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Single and multilayer graphenes are among the most
promising systems for the development of carbon-based de-
vices in electronics. Bilayer graphene is of particular interest
because a controlled tunable gap in the electronic spectrum
can be there induced by applying one �or more� external gate
voltages,1–3 as observed by transport3 and optical
measurements.4–7 The potential interest in application has
triggered also an intense research on the vibrational proper-
ties, that can be used, for instance, for a careful characteriza-
tion of the number of layers, the charge doping, and the
amount of disorder.8–10 Large part of the work in this context
has focused on the properties of the in-plane Eg mode at �
�0.2 eV which is present in single as well as in bilayer
systems, and which can be probed by Raman
spectroscopy.9–14

Recently, phonon peaks in the energy range ��0.2 eV
have been reported also in infrared �IR� optical measure-
ments of bilayer graphene,15,16 showing a rather different
phenomenology with respect to Raman spectroscopy. In par-
ticular, the observed IR phonon peak presents a strong de-
pendence of the intensity and of the Fano-type asymmetry as
a function of the applied gate voltage.15,16 These features
have been attributed, respectively, to a charged phonon effect
for the Eu antisymmetric �A� mode,15 or, at n=0, to the emer-
gence of a Fano profile for the Eg symmetric �S� mode,
whose optical activity can be triggered by the electrostatic
potential difference � between the two carbon planes.16

However, the possible connection between these two alterna-
tive views is still unclear.

In this Rapid Communication we provide a unified micro-
scopic framework that allows us to elucidate the relative role
of Eu and Eg phonon modes in bilayer graphene with regards
to the infrared activity and the Fano asymmetry of the ob-
served phonon peaks. We present a complete phase diagram
for the strength of the phonon modes and their Fano proper-
ties as functions of the chemical potential and �, showing
that a switching mechanism between the dominance of Eu or
Eg mode can be controlled by the external gate voltage. Our
work permits thus reconciling within a unique approach the
phonon-peak features observed by different experimental
groups.15,16

To compute the conductivity of bilayer graphene we work

in the 4�4 basis of the atomic orbitals �k
†

= �a1k
† ,b1k

† ,a2k
† ,b2k

† �, where aik
† and bik

† operators create an
electron in the layer i and on the sublattice A or B, respec-
tively. In this basis, the Hamiltonian for bilayer graphene

near the K point reads:17 Ĥk= ��vk · Î��̂�+ �� /2��̂z�Î�
+ �� /2���̂x��̂x�+ �̂y��̂y���, where �̂i and Î are 2�2 Pauli ma-

trices and the unit matrix, respectively, and Â�B̂�� Â � B̂.
Here v is the Fermi velocity for single-layer graphene and �
is the interlayer hopping. The electrostatic potential differ-
ence � induces a gap in the diagonalized bands 	k,n �Ref. 1�,
labeled according to Fig. 1�a�.

We set the electric field of the infrared radiation along the
x axis, so that the electric current reads j=	k�k

† ĵk�k, where

ĵk=−evÎ��̂x�. The two Eu and Eg in-plane optical phonons
have degenerate longitudinal and transverse polarization at
zero momentum q=0.17 We can write the electron-phonon
interaction for these modes as: Hep=	
V
�
, where �
 is the
dimensionless lattice displacement for the 
=A,S branch at

q=0, V
=	k ,�k
†V̂
�k is the corresponding electron-phonon

scattering operator. For a choice of the longitudinal polariza-

tion along x, one finds V̂A= ig�̂z��̂y� and V̂S= igÎ��̂y� �Ref.
17�, where g is the electron-phonon coupling.

Let us consider first the case of ungapped bilayer
graphene ��=0�, where only the A mode is optically active.
Since graphene is a nonpolar system, the bare dipole induced
by the rigid shift of the valence charges upon the A lattice
distortion is extremely small.15 Nevertheless, an optical pho-
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FIG. 1. �a� Scheme of the band structure. �b�–�d� Relevant dia-
grams entering the optical conductivity for �=0: dashed, solid, and
wavy lines represent the photon, the electron, and the phonon
Green’s functions, respectively. Squares and circles are the current

and the electron-phonon-scattering matrices ĵ, V̂A, V̂A
† , respectively.
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non response can be still mediated by the conduction charges
in the presence of the electron-phonon interaction, as sug-
gested by Rice18 in the context of organic and fullerene com-
pounds. The total optical conductivity of the system is com-
puted as ����=−� j j��� / i�, where � j j���=−
j j�� is the
current-current response function. In the presence of
electron-phonon interaction, one can identify two classes of
contributions in � j j���, namely, � j j���=� j j

el���+� j j
ep���. The

former, depicted in Fig. 1�b�, describes electronic excitations
�see, for example, Ref. 19� while the latter contains all the
diagrams which can be split in two by cutting one phonon
propagator �Fig. 1�c��.18 We can write thus

� j j
ep��� = � jA���DAA����A†j��� , �1�

where � jA���=−
jVA��, �A†j���=−
VA
† j�� are the mixed

current-phonon response functions and DAA���=−
�A�A��

���−�A+ i
A /2�−1 is the phonon propagator with fre-
quency �A and linewidth 
A renormalized by the phonon
self-energy �A†A �Fig. 1�d��. It should be emphasized that
two different response functions, � j j

el and � jA, enter in the
above decomposition of ����. This distinction, that has been
neglected in the original formulation,18 is, however, crucial,
because it implies that the allowed particle-hole excitations
of the system will contribute in a different way to the elec-
tronic optical background, related to � j j

el, to the phonon renor-
malization, controlled by �A†A, or to the electron-phonon op-
tical response, controlled by � jA.

Equation �1� leads to the onset, in the real part of the
optical conductivity �ep� ���=−Im � j j

ep��� /�, of a phonon
peak at �A. Indeed, using the relation �A†j���=� jA��� and
taking real and imaginary parts of each element in Eq. �1�,
we get

�ep� ������A
�

2�� jA� ��A��2

�A
A
�qA

2 − 1 + 2qAz

qA
2 �1 + z2� 
 , �2�

where z=2��−�A� /
A and where

qA = −
� jA� ��A�
� jA� ��A�

. �3�

Equation �2� has exactly the same structure as the Fano
formula.20 The derivation of Eqs. �2� and �3� shows not only
that in bilayer graphene the Fano effect originates from a
correct implementation of the charged-phonon Rice theory
but it also provides a compelling procedure to evaluate on
microscopic grounds the shape and the intensity of the pho-
non peak. For instance, from Eqs. �2� and �3� we can identify
the �-integrated peak area as WA� =��� jA�

2��A�
−� jA�

2��A�� /�A= �1−1 /qA
2 ���� jA�

2��A� /�A�. Since the sign of
WA� depends on qA it can be convenient, as done in Ref. 15,
to define a “bare” intensity as WA=�� jA�

2��A� /�A, which co-
incides with WA� in the limit �qA�→�, when Eq. �2� reduces
to a conventional Lorentzian peak with weight WA. Note,
however, that in the opposite case �qA��0 one recovers from
Eqs. �2� and �3� a completely negative Lorentzian peak, of
intensity −��� jA� ��A��2 /�A, so that the definition of “inten-
sity” of the phonon peak can be ambiguous in the presence
of the Fano effect. A more convenient quantity to parameter-
ize the strength of the phonon peak is pA=��� jA��A��2 /�A

=WA�1+1 /qA
2 �, which is always positive and vanishes when

the phonon peak is completely absent.
Equations �2� and �3� can be computed analytically by

using the noninteracting electron Green’s functions. The
quantity � jA has the typical structure of a particle-hole
Lindhard response function with proper coherence factors
CjA

nm weighting the contributions of the various excitations
between n and m bands. In particular, using the explicit ma-

trix expressions of ĵ and V̂A operators, one gets

� jA��� = � jA
12��� + � jA

13��� − � jA
24��� − � jA

34��� , �4�

where � jA
nm���=� jA

nm���−� jA
mn��� and

� jA
nm��� = 	

k
CjA,k

nm f�	k,n − �� − f�	k,m − ��
	k,n − 	k,m + �� + i�

. �5�

Here f�x�=1 / �exp�x /T�+1� is the Fermi function, CjA,k
nm

= �gevNsNv�� /4���vk�2+�2 for n ,m as in Eq. �4�, and zero
otherwise, � is the chemical potential, Ns=Nv=2 are the spin
and valley degeneracies, and the � factor takes into account
broadening effects due to impurities and inhomogeneities. In
the clean limit, �=0, we obtain the analytical expressions
valid for T=0 and �����

� jA� ��� = A�ln� �1 + u��1 − u + 2w�
�1 − u��1 + u + 2w�
 +

4uw

�1 − u2�� . �6�

� jA� ��� = �A����u� − 1���1 − �u� + 2w� + 2w���u� − 1�� ,

�7�

where A=ge� /4��v, u=�� /�, and w= ��� /�. Similar ana-
lytical expressions can be obtained for ���.

To compute the optical conductivity Eq. �2� we evaluate
the complex function � jA��� at the phonon resonance �A
�0.2 eV, using standard values for �v=6.74 eV Å and �
=0.39 eV. From the value �=6.4 eV Å−1 �Ref. 21� of the
deformation potential we get g=0.27 eV, corresponding to
the dimensionless parameter �= ��3 /��g2 / ��v /a�2=6
�10−3 �Ref. 17�, in agreement with the experimental esti-
mates given in Refs. 13 and 15. The resulting spectral weight
WA as evaluated from Eq. �2� and Eqs. �4� and �5� is shown
in Fig. 2 for �=0 and �=30 meV, along with the experi-
mental data Wexp, Wexp� taken from Ref. 15. Note that the
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FIG. 2. �Color online� WA, WA� intensities of the Eu mode as a
function of the charge concentration n for �=0 and �=0 and 30
meV. Also shown are experimental data from Ref. 15 for the bare
intensity Wexp and the �-integrated one Wexp� .

CAPPELLUTI, BENFATTO, AND KUZMENKO PHYSICAL REVIEW B 82, 041402�R� �2010�

RAPID COMMUNICATIONS

041402-2



only possible electron-hole excitations at the phonon energy
�A����, namely, the 2–3 multiband transitions, are not al-
lowed in Eq. �4�. Thus in the clean limit � jA��A��0, so that
no Fano effect �qA=−�� is found and WA� =WA while for �
�0 a small contribution to � jA� ��A� from the other interband
transitions gives rise to a weak Fano asymmetry, and hence
WA� �WA, as shown in Fig. 2. Both the magnitude of WA,
which is proportional to the dimensionless coupling �, and
its doping dependence are in excellent agreement with Wexp,
pointing out that the Eu mode is the main responsible for the
phonon infrared intensity reported in Ref. 15 at large n. On
the other hand, even in the presence of a large �, the above
calculations do not account for the negative integrated
weight Wexp� observed around n�0 �Fig. 2�, which has been
attributed in Ref. 16 to the onset of the Eg mode in the
presence of a finite potential asymmetry �. These observa-
tions suggest thus that different phonon modes can be opti-
cally relevant in different regions of the phase space.

Our theoretical framework allows us to investigate the
possibility of such phonon switching by taking into account
explicitly the role of �. When ��0 two effects must be
taken into account: �i� the phonon eigenmodes of the systems
do not correspond any more to Eu and Eg, even though the
new phonon eigenfrequencies �� follow closely the doping
dependence of the �A,S of the uncoupled modes.22,23 As a
consequence the phonon propagator DAA can develop at
large � a second peak with weaker intensity at approxi-
mately the frequency �S of the Eg mode. Note, however, that
according to Eq. �1� the infrared activity of the DAA phonon
propagator is still ruled by the strength pA. Since, as we shall
see below, pA vanishes for n→0 also when ��0, the ap-
pearance of the IR phonon structures at n�0 �Refs. 15 and
16� cannot be accounted for by the mixing of the modes; �ii�
in addition to the previous effect, the presence of a finite �
leads also to a finite mixed response function � jS���=
−
jVS���0. Equation �1� must be thus generalized as

� j j
ep��� = � jA���DAA����A†j��� + � jS���DSS����S†j���

+ �� jA���DAS����S†j��� + H.c.� , �8�

where �S†j���=� jS��� and D

����=−
�
�
��� are the pho-
non propagators, calculated including the hybridized phonon
self-energy �AS for finite �.22,23 Equation �8� shows how, due
to the � jS response triggered by the finite �, a direct coupling
channel to the symmetric Eg mode vibrations �the DSS pho-
non propagator� appears in the optical spectroscopy. Similar
expressions as Eqs. �4� and �5� can be derived for � jS, where,
however, the coefficients CjS,k

nm , as well as CjA,k
nm , have a more

complex structure for ��0.
To elucidate the competition between the different optical

channels in Eq. �8� we compute explicitly � jA and � jS for
generic � and �, giving a complete phase diagram that can
be explored in double-gated samples. To parameterize the
strengths of the relative channels we use the quantities p


=��� j
�2 /�av for 
=A,S and pAS=��� jA� jS� /�av for the
mixed channel, where �av is the average frequency of the
two poles of the phonon propagators.22,23 For a direct com-
parison with experimental data, we set T=10 K and �
=30 meV, which is halfway between �=18 meV reported

in Ref. 7 and �=40 meV in Ref. 16. The results for the
phonon strengths and Fano factors are plotted as a color map
in the �-� space in Figs. 3�a�–3�f� where also the �-� loca-
tion of the available IR data15,16 is shown.

Figures 3�a� and 3�b� show that the main parameter tuning
the strength of the Eu mode is the charge doping whereas the
Eg mode is active mainly around the neutrality point with a
strength that is tuned by the asymmetry gap �. The strength
of the mixed optical structure �third line in Eq. �8��, shown in
Fig. 3�c�, satisfies pAS� pA, pS in a large part of the phase
diagram so that only A and S channels �first two lines in Eq.
�8�� are active. The relative intensity RAS= �pA− pS� / �pA
+ pS� is summarized in Fig. 3�d�, where RAS�1 corresponds
a dominant Eu mode while RAS�−1 gives a dominant Eg
resonance. Note that the region RAS�0 where the two
strengths of the optical structures have similar magnitude is
quite narrow and difficult to resolve experimentally. In Figs.

FIG. 3. �Color online� �a�–�c� Strength p
 of the different
electron-phonon contributions to the optical conductivity. The
above color scale is in units of 103 �−1 cm−2. �d� Relative phonon
weight RAS. �e�–�f� Fano-asymmetry factors qA and qS. Also shown
in these plots is the �-� location of experimental data: �Ref. 16�
��� and �Ref. 15� ���. The corresponding optical spectra are shown
in panels �g� ��=0 and increasing � from A to E� and �h� �increas-
ing doping from 1 to 21�, respectively. Curves are displaced verti-
cally for clarity. �i� Different electron-phonon contributions W
�
�open symbols� to total �-integrated spectral weight �solid line�
calculated for �-� of Ref. 15. �j� corresponding Fano factors q


from Eq. �3�. The size of the open symbols in panels �i� and �j� is
proportional to p
. Crosses are experimental data from Ref. 15.
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3�e� and 3�f�, we plot also the relative Fano factor q
 for A
and S modes. As one can see, qA is essentially doping inde-
pendent while qS shows a sizeable dependence as function of
�. These behaviors can be understood considering that the
structure of Eq. �4� for � jA is still valid for ��0, so that the
low-energy 2–3 interband transitions are missing and the
weak Fano asymmetry of the A mode is only due to a finite
broadening due to � on the remaining transitions. On the
contrary all the interband transitions contribute to � jS, in-
cluding, in particular, the low-energy 2–3 interband transi-
tions which overlap with the phonon frequency �for 2���
��S�, accounting for the sizable dependence of qS as func-
tion of �.

The comparison of the present results with the �-� loca-
tion of the experimental available data provides an important
route to check our theoretical predictions. In Figs. 3�g� and
3�h� we show the optical conductivity �ep� ��� using Eq. �8�
for the � ,� values corresponding to the experimental data of
Refs. 15 and 16. The phonon propagators D

� are computed
taking account the self-energy hybridization due to
��0,22,23 and convoluted with the experimental resolution
of 10 cm−1.15 In Fig. 3�g� we plot the spectra for �=0,
showing the evolution of the optical intensity and of the
Fano asymmetry for increasing �. These features are related
uniquely to the Eg S mode,16 consistently with panels �a� and
�b�. On the contrary the spectra in Fig. 3�h�, evaluated at the
doping levels and electrostatic potentials of Ref. 15, are ex-
pected to show a continuous switching between A and S
modes, depending on the values of � and �. To investigate
deeper this issue, we plot in Fig. 3�i� the theoretical spectral
weights W
� for both Eu and Eg modes evaluated on the set of
experimental data �-� of Ref. 15. The size of the symbols is
proportional to the peak strength p
. The switch between the
Eu phonon peak and the Eu one in the regime n� �−1:3�

�1012 cm−2 is evident and is reflected in a total spectral
weight WT� =WA� +WS� which becomes negative in such n re-
gion, in good agreement with the experimental �-integrated
weight Wexp� . A similar phonon switch is also evident from
the analysis of the Fano asymmetry, reported in Fig. 3�j�.
Also here one can distinguish the crossover between a con-
stant q behavior at large n, which we can attribute to the Eu
mode, and a drop of �q� at small n in the region where the Eg
mode becomes dominant. The experimental fit, done with a
single-mode Fano formula, presents a similar trend.

We stress that the switching between Eu and Eg modes in
the optical conductivity discussed here is not related to the
possible appearance at large � of a double-peak structure in
each of DAA or DSS propagators.13,14,22,23 Even though the
two effects could be present simultaneously at large gap val-
ues, the optical data available so far are outside the region
where the two peaks can be resolved.

In conclusion, in this Rapid Communication we presented
a complete theoretical description of the phonon resonance
in bilayer graphene that accounts for both the intensity and
the Fano-asymmetry variations as functions of the density
and the gap. We also showed that an optical switching from
Eu to Eg can be induced in a controlled way, providing a full
understanding of the experimental data.

The derived phase diagram for the optical properties of-
fers a roadmap for the characterization of graphenic systems.
For instance, the measurement of the IR intensity of the pho-
non peak can provide a useful tool to determine the doping
level in contact-free samples.
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